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Nonlinear problem of flat-plate entry
into an incompressible liquid
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The self-similar flow and free-surface shape induced by a flat plate entering an
inviscid and incompressible liquid are investigated for arbitrary initial conditions. An
analytical solution, which is based on two governing expressions, namely the complex
velocity and the derivative of the complex potential, is obtained. These expressions
are derived in an auxiliary parameter plane using integral formulae proposed for the
determination of an analytical function from its modulus and argument given on
the boundary of the parameter region. We derive a system of an integral and an
integro-differential equation in terms of the velocity modulus and the velocity angle
at the free surface, which are determined by the dynamic and kinematic boundary
conditions. A numerical procedure for solving these equations is carefully validated by
comparisons with results available in the literature. The results are presented in terms
of the free surface shape, the angles at the tip of the splash jet, the contact angles
at the intersection with the plate surface, pressure distribution and force coefficients.
New features caused by the flow unsteadiness are found and discussed.

1. Introduction
During the last decade, practical needs in the design of seaplanes, half-submerged

propellers, planing hulls and high-speed vessels have lead to a renewal of interest in
research on unsteady hydrodynamic effects which may lead to heavy hydrodynamic
loads on the vessels and their structural elements (Faltinsen, Landrini & Greco 2004;
Faltinsen 2005).

Water entry problems, a subset of general unsteady fluid-structure interaction
problems, have been studied most for the case of wedge entry, to understand the
phenomenon of slamming characterized by the formation of thin ‘jets’ running up
the sides of the impacting wedge-shaped body and the occurrence of a high pressure
peak near the core of the jets. For the oblique water entry of thin arbitrarily oriented
wedges, flow separation may occur at the wedge apex. In this case only one side of
the wedge interacts with the liquid and the flow corresponds to the water entry of
a flat plate. This type of flow is characterized by an additional feature on the free
surface: the formation of a splash jet running upwards but away from the plate.

A linear theory of the water entry of a flat plate has been developed by Wang (1977,
1979), to estimate unsteady loads on the blades of partially submerged propellers.
Wang considered three stages of blade motion in the liquid, namely the initial,
completely submerged and exit stages, and presented a linear solution for each
stage. Using Sohotsky–Plemel’s formula, the solution is derived in terms of the
complex potential and integral equations for the determination of the vertical velocity
component on the cavity boundary. However, linear theories of water entry problems
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fail to predict the phenomenon of slamming, which is a result of coupled nonlinear
and unsteady effects at relatively large incidence angles.

Nonlinear solutions of unsteady free-surface flows have been obtained only for
a limited number of special cases, and they are based on the calculus of complex
variables introduced in hydrodynamics by Helmholtz (1868). The first complete
solution of this kind was obtained by Dobrovol’skaya (1969) for a two-dimensional
symmetric wedge vertically entering the free surface at a constant entry speed.
Dobrovol’skaya was able to reduce the problem to finding Wagner’s function defined
on the whole real axis of the upper half-plane, which is determined using the
Schwarz integral formula. Chekin (1989) generalized Dobrovol’skaya’s approach
to the solution of the problems of water entry of a wedge and a flat plate. At the
same time, instead of finding Wagner’s function, Chekin represented, in integral form,
the derivative of the function z(u) which conformally maps the auxiliary upper half-
plane u onto the flow region plane. He also introduced the function χ(u) = z′(u)V ′(u)
where V (u) is the complex velocity (primes denote differentiation) and showed that
Im [χ(u)] = 0 on the wetted part of the plate and Re [χ(u)] = 0 on the free boundaries.
Using the Schwarz and Sohotsky–Plemel integral formulae, he found the relation
between the argument and modulus of the function z′(u). By taking advantage of
the flow self-similarity and the boundary conditions, he reduced the problem to an
integral equation in the unknown function arg [z′(u)]. Chekin presented only one
example of calculations, that for the case of the oblique entry of a flat plate. Other
initial conditions are still to be investigated.

There are many publications concerning the water entry of blunt wedges and the
normal impact of a flat plate based on various simplified methods or asymptotic
expansions where use is made of Wagner’s idea (Wagner 1932) of considering the
water entry process as a sequence of impulse impacts. The problem was considered
in the modern framework of matched asymptotic expansions by Cointe & Armand
(1987), Wilson (1989), Howison, Ockendon & Wilson (1991), Mei, Liu & Yue (1999),
Iafrati & Korobkin (2004), Howison, Ockendon & Oliver (2004), Oliver (2007).

In this paper we present a nonlinear analytical solution of the unsteady self-similar
flow induced by the oblique water entry of a flat plate. The method of solution is
based on further development of Chaplygin’s singular point method, which is an
extension of the hodograph method, and aimed at simplifying the determination of
the analytical function that is the complex potential of a free-boundary flow. An
example of the application of Chaplygin’s singular point method to the derivation
of analytical functions is presented in the paper by Semenov & Iafrati (2006) for
the case of water entry of asymmetric wedges. By using this approach, it is possible
to derive generalized formulae determining an analytical function from its boundary
conditions of various kinds, which are presented in this paper (equations (2.5) and
(2.9)). The advantage of these formulae is that an analytical function satisfying given
boundary conditions is found directly without recourse to the singular point method.

Formula (2.5) determines an analytical function from its modulus and argument
given on the imaginary and real axes of the first quadrant, which is chosen as the
parameter region. Formula (2.9) determines an analytical function whose argument is
given on both the real and imaginary axes. These formulae provide some simplification
in solving nonlinear free-boundary problems because the dynamic (Cauchy–Lagrange
integral) and the kinematic (non-penetration condition) boundary conditions directly
determine the modulus and argument of the complex velocity.

Following Zhukovskii’s method (Zhukovskii 1890), the solution is given in terms
of two governing functions, which are the complex velocity and the derivative of
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Figure 1. Sketch of the initial stage of flat plate water entry: (a) the physical plane,
(b) the parameter plane.

the complex potential defined in the first quadrant of the parameter plane. The
theoretical formulation of the problem discussed in § 2 is similar to that presented for
the self-similar water entry problem for asymmetric wedges (Semenov & Iafrati 2006).
Attention is given to a new type of singularity, which appears in the expression for the
derivative of the complex potential due to the corner point of the splash jet on the free
surface. The integral representation of the complex velocity contains a function which
is the velocity modulus along the free boundary. The integral representation of the
derivative of the complex potential contains a function which is the angle the velocity
vector forms with the free surface. Both the velocity modulus and the angle of the
velocity vector are functions of a parameter variable along the imaginary axis of the
first quadrant. The solution is obtained in the form of a system of an integral and an
integro-differential equation in the aforementioned functions, which are derived from
the dynamic and kinematic boundary conditions using the self-similar statement of
the problem. In § 3, a numerical method for solving the system of integral equations
is presented. It is carefully validated by comparing the results obtained with those of
Wang’s (1977, 1979) linear theory and Chekin’s (1989) nonlinear theory. In § 4, the
results for the oblique entry of a flat plate are presented in terms of the free surface
shape, the contact angle of the tip jet, the angle of the splash jet on the free surface,
pressure distributions and force coefficients.

2. Theoretical formulation and analysis
The initial stage of the entry of a flat plate into water with free surface originally at

rest is studied in a frame of reference attached to the impacting body with its origin C
located at the leading edge of the flat plate. The wetted part of the plate OC is less than
the length of the plate. In this frame of reference, away from the plate the fluid velocity
is directed along a line forming an angle γ∞ with the horizontal axis x, and its modulus
approaches the value V∞ (see figure 1a). The liquid is assumed to be incompressible,
and gravity, surface tension and viscous effects are neglected. The pressure on the free
surface is constant and equal to the atmospheric pressure. Let α denote the angle of
attack relative to the velocity direction, β = γ∞ − α is the deadrise angle.

A feature of the problem is the presence of a corner point, B, on the free surface.
At time t = 0 points B, O and the leading edge of the flat plate are located at the same
point of the undisturbed free surface. For t > 0 the initial free surface that existed
at time t = 0 and the ‘new’ free surface starting from the leading edge of the flat
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plate are governed by the same equation of motion a = −gradP where a is the liquid
particle acceleration, and P is the pressure in the liquid. If the pressure on the free
surface is constant and lower than the pressure in the liquid, then the acceleration is
in the direction of the outer normal vector of the free surface. The same direction of
acceleration of a liquid particle moving along either the initial or ‘new’ free surface
can result in only concave shapes of these parts of the free surface. The junction of
the initial and ‘new’ concave free surfaces leads to the corner point B. We note that
a liquid particle at point B does not move along the free surface because it moves
with the tip of the splash jet. This point separates the total free surface into two
concave lines. The corner point B is a result of interaction of the undisturbed free
surface and the flat plate at time t = 0. Only one such point exists. Owing to the flow
self-similarity, there are no other corner points on the free surface for t > 0. Existing
experiments confirm this flow topology.

For a constant entry velocity, the time-dependent problem in the physical plane
Z = X+iY can be written in terms of the self-similar variables in the stationary region
x = X/(V0t), y = Y/(V0t) where V0 is the velocity modulus at the contact point O in
the physical plane.

According to the above definitions, V0 is used as a reference value, and then the
velocity modulus of point O in the stationary plane is unity (v0 = 1). The complex
velocity potential W (Z, t) = Φ(Z, t) + iΨ (Z, t) takes the form

W (Z, t) = V 2
0 tw(z) = V 2

0 t [φ(z) + iψ(z)] . (2.1)

The problem is to determine a function w(z) which conformally maps the stationary
plane z onto the complex velocity potential region w. As pointed by Zhukovskii
(1890), it is easier to find mapping functions in parametric form using an auxiliary
parameter plane. Following Chaplygin (his method is discussed in the book by
Gurevich 1965), we choose the first quadrant of the ς-plane as the parameter region
corresponding to the flow region to derive expressions for the complex velocity, dw/dz,
and the derivative of the complex potential, dw/dς , as functions of the variable
ς = ξ + iη. If these functions are known, the velocity field and the relation between
the parameter region and the physical flow region can be determined as follows:

vx − ivy =
dw

dz
(ς), z(ς) = z(0) +

∫ ς

0

dw

dς

/
dw

dz
dς, (2.2)

where vx and vy are the x- and y-components of the velocity.
Conformal mapping allows us to fix three arbitrary points in the parameter region,

which are O, C and D as shown in figure 1(b). In this plane, the positive imaginary axis
(η > 0, ξ = 0) corresponds to the free surface and the positive real axis (ξ > 0, η = 0)
corresponds to the wetted part of the plate.

The points ς = a and ς = ib are the images of the stagnation point A and the tip
B of the splash jet in the physical plane, respectively. The parameters a and b are
unknowns and have to be determined as part of the solution.

2.1. Expressions for the complex velocity and for the derivative
of the complex potential

At this stage it is assumed that the velocity modulus along the free surface, that is
along the positive part of the imaginary axis,

v(η) =

∣∣∣∣dw

dz

∣∣∣∣ (2.3)
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is known. This function will be determined below using the dynamic boundary
condition. In the frame of reference attached to the flat plate, the normal velocity
component equals zero due to the impermeability condition. This means that the
argument χ of the complex velocity along the real axis of the parameter region is
fixed and determined by the plate orientation

χ(ξ ) = arg(dw/dz) =

{
−β, 0 < ξ < a, η = 0
−π − β, a < ξ < ∞, η = 0.

(2.4)

The problem is then to find a function dw/dz in the first quadrant of the parameter
plane which satisfies the given boundary conditions. The formula

dw

dz
= v(∞) exp

[
1

π

∫ ∞

0

dχ

dξ ′ ln

(
ς + ξ ′

ς − ξ ′

)
dξ ′ − i

π

∫ ∞

0

d ln v

dη′ ln

(
ς − iη′

ς + iη′

)
dη′ + iχ(∞)

]

(2.5)

provides a solution of the mixed boundary-value problem in the first quadrant of the
complex plane ς . It can be easily verified that for ς = ξ the argument of the function
dw/dz is the function χ(ξ ) while for ς = iη the modulus of dw/dz is the function
v(η), i.e. the boundary conditions (2.3) and (2.4) are satisfied. Some specific cases of
this integral formula were obtained when solving the problems of a free boundary
flow in a corner-shaped Hele-Shaw cell (Semenov & Cummings 2006) and of the
self-similar asymmetric entry of a wedge into water (Semenov & Iafrati 2006).

The argument of the complex velocity undergoes a step change at the point ς = a

corresponding to the splitting of the streamline at the stagnation point A in the
physical plane. Substituting equation (2.4) into the first integral in (2.5) and taking
into account that arg(ς − iη′) = arg(iη′ − ς) − π in the second integral, we finally
obtain an expression for the complex velocity in the ς-plane as

dw

dz
=

(
ς − a

ς + a

)
exp

[
− i

π

∫ ∞

0

d ln v

dη′ ln

(
iη′ − ς

iη′ + ς

)
dη′ − i(π + β)

]
. (2.6)

This expression shows that the complex velocity function has only one simple zero
corresponding to the stagnation point A.

In order to analyse the behaviour of the velocity potential along the free surface, it
is useful to introduce the unit vectors n and τ which are normal and tangent to the
free surface, respectively. The normal vector is directed from the fluid region outward
while the spatial coordinate along the free surface s increases along the free surface
with the fluid region on the left (figure 1). With this notation,

dw = (vs + ivn) ds, (2.7)

where vs and vn are the tangential and normal velocity components, respectively. Let
θ denote the angle between the velocity vector on the free surface and the unit vector
τ , θ = tan−1

(
vn/vs

)
; its behaviour along the boundary of the fluid region is shown

in figure 2.
The definition (2.7) allows us to determine the argument of the derivative of the

complex potential dw/dς which appears in equation (2.2),

ϑ(ς) = arg

(
dw

dς

)
= arg

(
dw

ds

)
+ arg

(
ds

dς

)
=

{
θ, 0 < ξ < ∞, η = 0,

θ − π/2, ξ = 0, 0 < η < ∞.

(2.8)
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Figure 2. The variation of the function θ = tan−1 (vn/vτ ) along the boundary of the fluid
region. Continuous changes are shown by solid lines, step changes by dashed lines.

Then the problem is to find a function dw/dς which satisfies the given boundary
conditions (2.8). The formula

dw

dς
= K exp

[
− 1

π

∫ ∞

0

dϑ

dξ ′ ln(ς2 − ξ ′2) dξ ′ +
1

π

∫ ∞

0

dϑ

dη′ ln(ς2 + η′2) dη′ + iϑ(∞)

]
,

(2.9)

provides a solution of this boundary-value problem in the first quadrant of the
complex plane ς . Here, K is an arbitrary real factor, which will be determined in
the following. It can be easily verified that for ς = ξ or ς = iη the argument of the
function dw/dς is the function ϑ(ς), i.e. the boundary condition (2.8) is satisfied.

Now we have to determine the function θ(ς) along the whole fluid boundary, that
is, along the real and imaginary axes of the parameter region. On moving along the
free surface from point O to point D, the function θ(ς) increases from the value μO

at ς = 0 to the value π − γ∞ corresponding to the velocity direction at infinity (the
point at ς = i). In order to find the left-hand side of the free surface away from the
plate, we have to move along a closed line of large radius to provide the constant
velocity direction. Thus, on going around an infinitesimal semicircle centred at the
point ς = i corresponding to the large radius in the physical plane, the function θ(ς)
changes by �θD = −2π. The continuous changes of the function θ(ς) are shown in
figure 2 by solid lines while its step changes are shown by dashed lines. Further, the
function θ(ς) changes continuously when moving along the free surface from point
D′ to point B. At point B (ς = ib) the function θ(ς) undergoes a jump equal of
�θB =μB − π corresponding to the corner point of angle μB on the free surface. It is
shown in figure 2 by the dashed line from point B− to point B+. From point B+ to
point C the normal velocity component decreases and becomes equal to zero at the
leading edge of the plate, i.e. θ(ς) → 0 when η → ∞, ξ =0. In the region a < ξ < ∞,
η = 0 corresponding to the fixed plate the function θ(ς) ≡ 0 since vn = 0 and vs > 0. In
the region 0 <ξ <a, η = 0 the function θ(ς) ≡ π since vn = 0 and vs < 0, thus at the
point ς = a the function θ(ς) has a jump �θA = −π. The final jump �θO = μO − π
occurs at point O when moving in the vicinity of the point ς = 0 from the plate
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surface, ξ > 0, η = 0, to the free surface, ξ = 0, η > 0. By introducing the continuous
function λ(ς) we can write the function θ(ς) as follows

θ(ς) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ(ς), ξ = 0, 0 < η < 1,

λ(ς) + �θD, ξ = 0, 1 < η < b,

λ(ς) + �θD + �θB, ξ = 0, b < η < ∞,

λ(ς) + �θD + �θB, a < ξ < ∞, η = 0,

λ(ς) + �θD + �θB + �θA, 0 < ξ < a, η = 0,

λ(ς) + �θD + �θB + �θA + �θO, ξ = 0, η = 0.

(2.10)

where �θD = −2π, �θB =μB − π, �θA = −π, �θO = μO − π.
By substituting equations (2.8) and (2.10) into the first integral in (2.9), when ς

varies along the real axis, and into the second integral, when ς varies along the
imaginary axis of the parameter region, and evaluating the integrals over each step
change of the function θ(ς), we finally obtain an expression for the derivative of the
complex potential in the ς-plane as

dw

dς
= Kς2μO/π−1 (ς2 − a2)

(ς2 + 1)2(ς2 + b2)1−μB/π
exp

[
1

π

∫ ∞

0

dλ

dη′ ln(ς2 + η′2) dη′
]
. (2.11)

The evaluation of the integrals over the step changes is done, for example, at point
D (ς = i) as follows

lim
ε→0

∫ 1+ε

1−ε

dθ

dη′ ln(ς2 + η′2) dη′ = ln(1 + ς2) lim
ε→0

∫ 1+ε

1−ε

dθ

dη′ dη′ = �θD ln(1 + ς2).

Integration of equation (2.11) in the parameter region allows us to obtain the
function that conformally maps the parameter region onto the corresponding region
in the complex potential plane:

w(ς) = w(0) + K

∫ ς

0

ς2μO/π−1(ς2 − a2)

(ς2 + 1)2(ς2 + b2)1−μB/π
exp

[
1

π

∫ ∞

0

dλ

dη′ ln(η′2 + ς2)dη′
]

dς.

(2.12)
Dividing (2.11) by (2.6), we derive the expression

dz

dς
=

dw/dς

dw/dz
= Kς2μO/π−1 (ς + a)2

(ς2 + 1)2(ς2 + b2)1−μB/π
exp

[
1

π

∫ ∞

0

dλ

dη′ ln(η′2 + ς2) dη′

+
i

π

∫ ∞

0

d ln v

dη′ ln

(
iη′ − ς

iη′ + ς

)
dη′ + i(π + β)

]
, (2.13)

whose integration in equation (2.2) gives the function that conformally maps the first
quadrant of the parameter plane onto the stationary z-plane. Integration along the
imaginary axis in the parameter region provides the free surface of the flow.

The expression for the complex velocity (2.6) has no singularity at the point ς = ib.
This means that the velocity changes continuously in the region |ς − ib| < ε of the
parameter plane, which corresponds to the splash jet in the physical plane. In contrast,
the derivative of the flow potential (equation (2.11)) has the integrable singularity

dw

dς
∼ (ς − ib)μB/π−1 ,
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if μB > 0. The same singularity occurs in the expression for the function dz/dς , whose
integration in the vicinty of the point ς = ib gives

z(ς) − zB = C∗ π

μB

(ς − ib)μB/π

where C∗ is a complex constant.
The functions v(η) and λ(η) are determined from the dynamic and kinematic

boundary conditions in the following. The parameters a, K, μB, are determined from
the following physical considerations.

At infinity, the complex velocity approaches the value v∞ exp (−iγ∞). By taking the
argument of equation (2.6) when ς = i, we obtain the following nonlinear condition

1

π

∫ ∞

0

d ln v

dη′ ln

∣∣∣∣η
′ − 1

η′ + 1

∣∣∣∣ dη′ + 2 arctan
1

a
− α = 0. (2.14)

The wetted length of the flat plate grows as V0t , and then the length of the segment
OC in the stationary plane is unity, that is, |zO | =1. Hence, the following condition
is obtained: ∫ ∞

0

∣∣∣∣ dz

dς

∣∣∣∣
ς=ξ

dξ = 1. (2.15)

Finally, an additional condition is obtained by requiring that the y-coordinate of
the free surface at infinity on the right and on the left be the same, that is

Im

(∮
ς=i

d z

dς
dς

)
= Im

(
πi Res

ς=i

dz

dς

)
= Im

(
πi lim

ς=i

d

dς

(
dz

dς
(ς − i)2

))
= 0.

By evaluating the integral using the theorem of residues, we find

− 1

π

∫ ∞

0

dλ

dη′
dη′

η′2 − 1
+

1

a2 + 1
+

1 − μB/π

b2 − 1
+

μO

π
− 1 = 0. (2.16)

2.2. Dynamic and kinematic boundary conditions

Along the free surface the pressure is constant and equal to the atmospheric pressure
Pa . The Cauchy–Lagrange integral written in the physical plane for point O and an
arbitrary point in the flow gives

∂Φ

∂t

∣∣∣∣
Z

+
V 2

2
+

P

ρ
=

∂Φ

∂t

∣∣∣∣
Z=0

+
V 2

0

2
+

Pa

ρ
, (2.17)

By taking advantage of the flow self-similarity alone, the Cauchy–Lagrange integral
can be reduced to a differential equation relating the derivatives of the velocity
modulus and angle with the free surface, obtained by Semenov & Iafrati (2006)

d ln v

ds
=

s sin θ

v + s cos θ

dθ

ds
. (2.18)

By multiplying both sides of equation (2.18) by ds/dη and taking into account that
dθ/ds = dλ/ds, 0 < η < 1, we obtain the following integro-differential equation:

d ln v

dη
=

s sin θ

v + s cos θ

dλ

dη
(2.19)
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where

s(η) = −
∫ η

0

∣∣∣∣dz

du

∣∣∣∣
u=iη

dη = −K

∫ η

0

η2μO/π−1

v(η)

η2 + a2

(1 − η2)2|b2 − η2|1−μB/π

× exp

[
1

π

∫ ∞

0

dλ

dη′ ln |η′2 − η2|dη′
]

dη. (2.20)

Equations (2.18)–(2.20) hold only along the right-hand side. The same equations
can be obtained for the segments DB and BC, but the coordinate s should be taken
starting from point B, at which the potential should be W (ZB, t) = 0 (Shorygin 1995).

The kinematic boundary condition expresses the fact that the free surface is a
material surface which is made up of the same liquid particles. From the general
equation of classical hydrodynamics

dU
dt

= − 1

ρ
gradP,

where ρ is the liquid density, applied to the particles on the free surface where the
pressure P = Pa is a constant, it follows that the acceleration of the liquid particles,
dU/dt , is orthogonal to the free surface

Re

(
dU
dt

dZ

)
= 0. (2.21)

Here, dZ is a small element along the free boundary. Let γ denote the argument of the
velocity vector U and δ = γ + θ the argument of the element dZ. By using similarity
relations to pass from the variables in the physical plane to the corresponding ones
in the stationary plane, the condition (2.21) leads to a differential equation relating
the derivatives of the modulus and angle of the velocity vector. Equation (2.21) takes
the form

dγ

dη
= − 1

tan θ

d ln v

dη
. (2.22)

By writing equation (2.6) for ς = iη, another equation for γ can be obtained as

γ = Im

(
ln

dw

dz

)
,

and its differentiation with respect to η yields

dγ

dη
=

2a

a2 + η2
− 1

π

∫ ∞

0

d ln v

dη′
2η′

η′2 − η2
dη′. (2.23)

From equations (2.22) and (2.23), the following integral equation in d ln v/dη is
obtained:

− 1

2 tan θ

d ln v

dη
+

1

π

∫ ∞

0

d ln v

dη′
η′

η′2 − η2
dη′ =

a

a2 + η2
. (2.24)

The system of equations (2.14)–(2.16), (2.19) and (2.24) allows us to determine the
parameters a, μB, K and the functions v(η), λ(η) together with the function θ(η)
related to λ(η) by equation (2.10). Once the functions v(η) and θ(η) are evaluated, the
velocity modulus at the leading edge of the plate, vC, and the contact angle between
the plate and the free surface are determined as follows:

vC = lim
η→∞

v(η), μO = lim
η→0

θ(η). (2.25)
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The last unknown parameter b is determined so that the dynamic boundary
condition (2.17) at the leading edge of the plate is satisfied. Applying this equation to
points O and C and using self-similar variables, the following equation is obtained:

v2
C = −1 − 2φC, (2.26)

where φC = Re [w(ς)]|ς = ξ → ∞ is determined from equation (2.12).

The pressure coefficient p =2P
/
ρV 2

∞ along the plate is determined from equation
(2.17) assuming the similarity of the pressure distribution in time. This means that
the pressure is the same in time at the points S = V0ts in the physical plane

Z(S, t) = V0t

(
1 − S

V0t

)
eiβ, 0 � S � V0t. (2.27)

Determining the term ∂Φ/∂t in equation (2.17) with the use of self-similar variables
and equation (2.27) and taking into account that the imaginary part of the complex
potential equals zero on the solid surface, the following expression for the pressure
coefficient is obtained (Semenov & Iafrati 2006):

p(ξ ) = −2 (φ + sv) + (1 − v)2

v2
∞

, 0 � ξ � ∞ (2.28)

where φ, v, s are determined from equations (2.12), (2.6) and (2.13) as follows:

φ = Re [w(ς)]|ς=ξ , v =

∣∣∣∣dw

dz

∣∣∣∣
ς=ξ

, s(ξ ) =

∫ ξ

0

∣∣∣∣ dz

dς

∣∣∣∣
ς=ξ

dξ, v∞ = v(η)|η=1 .

By integrating the pressure coefficient along the plate, the following expression for
the normal force coefficient is obtained:

Cn =
1

0.5ρV 2
∞H

∫ V0t

0

P (S)dS =
1

v∞h

∫ ∞

0

p(ξ )
ds

dξ
dξ (2.29)

where H = V∞th, h = sin γ∞/ tan(γ∞ − α) − cos γ∞, is the distance between the point
where the leading edge of the flat plate touches the free surface and the current
intersection point of the undisturbed free surface and the flat plate, which is chosen
as the characteristic length.

The pressure is characterized by a jump in its derivative about the stagnation
point, which is related to the behaviour of the velocity modulus. Differentiating the
dependence (2.28) along the spatial coordinate s, we obtain

dp

ds
= − 2

v2
∞

(
dφ

ds
+ (s − 1 + v)

dv

ds
+ v

)
. (2.30)

At the stagnation point both the velocity modulus and the tangential derivative of
the velocity potential vanish, i.e. v = 0 and dφ/ds = vs = 0. Analysing the behaviour of
the derivatives dv/dξ using equation (2.6) and ds/dξ = |dz/dς |ς = ξ in equation (2.13)

shows that about the stagnation point ξ = a the quantity dv/ds = (dv/dξ )/(ds/dξ ) is
finite and different from zero, and its sign changes about the stagnation point. As
follows from equation (2.30), the sign of dp/ds at the stagnation point sA < 1 also
changes, which leads to a cusp point in the pressure distribution along the plate. Since
for steady flows dp/ds =0 at the stagnation point, this effect occurs due to the flow
unsteadiness.
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2.3. Asymptotic behaviour of the free surface.

The physical model of the flow under consideration assumes that at time t = 0 the
flow region occupies the half-space with the initial free-surface shape y(x, 0) = 0,
−∞ <x < ∞. For any time t > 0 the perturbations of the free-surface caused by the
entry of the flat plate decay at infinity, and therefore the free-surface level at infinity
remains zero, i.e. y∞ = y(±∞, t) = 0 (Howison et al. 2004). The same considerations for
steady flows with free boundaries that expand without limit do not lead to the same
conclusion because even small perturbations of the velocity at infinity may lead to an
infinite change of the free surface during infinite time. Examples of such flows as well
as their classic solutions are well known, such as, jet flows past bodies or flows past
bodies planing over the free surface. The classic solutions of these problems without
gravity predict an infinite level of the free surface at infinity y∞ ∼ log|x|, x → ± ∞,
which is known as Green’s paradox (Green 1935). Let us check our solution for the
behaviour of the coordinate of the free surface at infinity.

For ς = iη, which corresponds to the free surface, equation (2.13) can be written as
follows:

dz

dς

∣∣∣∣
ς=iη

=
ds

dη
eiδ

where s is the spatial coordinate along the free surface and δ is the argument of the
element dz determined from equation (2.13)

δ(η) = λ(η) + 2 arctan
η

a
+

1

π

∫ ∞

0

d ln v

dη′ ln

∣∣∣∣η
′ − η

η′ + η

∣∣∣∣ dη′ + γ∞ − α − π. (2.31)

At the point η = 1 the function ds/dη has the singularity (1 − η)−2. Also, when
η → 1, δ → 0 and x → ∞ to give dx/dη ≈ ds/dη and dy/dη ≈ δ ds/dη. In order to
estimate the leading order of the function δ(η) near the point η = 1, consider the
expansion

δ(η) = δ(1) +
dδ

dη

∣∣∣∣
η=1

(η − 1) + O(η − 1)2.

Setting η = 1 in equation (2.31) and taking into account that λ(1) = π − γ∞, we obtain
the same equations as (2.14), i.e. δ(1) = 0.

Differentiating equation (2.31)

dδ

dη
=

dλ

dη
+

2a

a2 + η2
− 2

π

∫ ∞

0

d ln v

dη′
η′dη′

η′2 − η2
.

and substituting

dλ

dη
=

1

tan θ

d ln v

dη

obtained from the dynamic boundary condition (2.23) when η → 1 and thus s → ∞,
we have

dδ

dη

∣∣∣∣
η=1

=
1

tan θ

d ln v

dη
+

2a

a2 + 1
− 2

π

∫ ∞

0

d ln v

dη′
η′dη′

η′2 − 1
. (2.32)

This expression is equal to zero in view of the integral equation (2.24) at the point
η =1, which is obtained from the kinematic boundary condition. Thus the function
δ(η) ∼ O(η − 1)2, and the integral of the function dy/dη ≈ δ ds/dη has a finite value.

Steady flows usually have a stagnation point similar to point A. Also, the normal
component of the velocity on the free boundaries equals zero, i.e. the functions
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λ(η) = θ(η) ≡ 0. The velocity modulus along the free boundaries is also constant,
i.e. d ln v/dη ≡ 0. For this case from equation (2.32) it follows that dδ/dη 
= 0. This
means that due to the stagnation point the expressions dy/dη = δ ds/dη ∼ (η − 1)−1

and dx/dη = ds/dη ∼ (η −1)−2 have a first- and second-order singularity, respectively.
Thus the function y(x) has a logarithmic singularity, y ∼ log|x|, which corresponds to
Green’s paradox.

The present solution predicts the increase of the free-surface elevation as
Y (x, t) = y(x)t , where y(x) → 0, x → ± ∞, from the self-similar statement of the
problem, which is valid at initial stages of water entry. The next time-dependent
stage of complete entry is an intermediate stage between the initial stage and the
final stage of the corresponding steady flow for which y ∼ log |x| at infinity. Thus,
for time-dependent problems, the logarithmic singularity y ∼ log |x| in the shape of
the free surface appears locally near the body and extends to infinity as t → ∞. This
has also been shown by Needham, Billingham & King (2007), who studied the
time-dependent flow caused by the impulsive motion of a rigid vertical plate using
the method of matched asymptotic expansions.

3. Numerical method
3.1. Numerical approach

The method of successive approximations is applied to solve the system of nonlinear
equations including the integro-differential equation (2.19) and the integral equation
(2.24) containing a Cauchy-type kernel. The method consists of applying the Hilbert
transform to solve equation (2.24) and determining the (k + 1)th approximation as
follows (

d ln v

dη

)(k+1)

=
4

π

∫ ∞

0

{
1

2 tan θ

d ln v

dη′ +
a

a2 + η′2

}k
η′

η′2 − η2
dη′. (3.1)

From equation (2.19) the (k+1)th approximation of the derivative dλ/dη is obtained
(

dλ

dη

)k+1

=
vk+1 + sk cos θk

sk sin θk

(
d ln v

dη

)k+1

(3.2)

where

θ(η) =

{
λ(η), 0 < η < b

λ(η) + π − μB, b < η < ∞,

the integration of which along the imaginary axis of the parameter region provides
the (k + 1)th approximation for the function θ(η). The system of nonlinear equations
(2.14)–(2.16) is solved at each iteration. The iteration procedure is repeated for
each value of the parameter b when solving equation (2.26) for the parameter b.
The functions v(η) and θ(η) have two singularities at points O and B as follows
from equations (3.1) and (3.2). At these points the flow potential and the arclength
coordinate were set equal to zero to derive these integral equations. On the other
hand, the functions v(η) and θ(η) are bounded by their definition. In order to evaluate
the integral in equation (3.1), the lower limit in the integral is set equal to a small
value ε as discussed in the following.

In discrete form, the solution is sought on a set of points ηj , j = 1 . . . 3N lying on
the intervals: 0 <ηj < 1, j = 1 . . . N ; 1 <ηj � b, j = N +1 . . . 2N; b <ηj � η3N , which
correspond to the segments OD, DB and BC, respectively. The points 0 <ηj < 1
are fixed while the points on the other intervals depend on the parameter b and
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μO/π μB/π

η1, η2N+1 − b N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

10−5 0.03476 0.03469 0.03461 0.31659 0.31733 0.31758
10−6 0.03465 0.03460 0.03455 0.30726 0.30812 0.30838
10−7 0.03461 0.03458 0.03457 0.30303 0.30422 0.30450
10−8 0.03458 0.03457 0.03457 0.30094 0.30257 0.30286
10−9 0.03456 0.03456 0.03457 0.29965 0.30145 0.30211
10−10 0.03453 0.03455 0.03457 0.29872 0.30124 0.30207

Table 1. Tip jet angles at the contact point O and at point B on the free surface for vertical
flat-plate water entry with angle of incidence α = 30◦. The results in the columns correspond to
different distances between the singular point η = 0 (η = b) and the nearest node. The results
in the rows correspond to different numbers of nodes.

are distributed as a geometric series with higher density near the singular points
η0 = 0, η2N = b. The functions v(η) and θ(η) are interpolated linearly on the intervals(
ηj−1, ηj

)
to obtain analytical expressions for the integrals in (2.6) and (2.11), thus

reducing the computational effort.
The arclengths s1, s2N−1, s2N+1 nearest to points O and B are evaluated analytically

taking into account the singularity in the integrand in equation (2.20), thus yielding

s1 = −K
a2

b1−μB/π
exp

(
2

π

∫ ∞

0

dλ

dη′ ln η′dη′
)

πη
2μO/π
1

2μO

,

s2N+1 =
K

2vB

b2μO/π−1 (a2 + b2)

(1 − b2)2
exp

(
1

π

∫ ∞

0

dλ

dη′ ln |η′2 − b2|dη′
)

π(η2N+1 − b)μB/π

μB

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(3.3)

where vB = v(η)|η = b. Since the distances of points η2N−1, η2N+1 from point η2N = b

are chosen to be the same, i.e. η2N+1 − b = b − η2N−1, then s2N−1 = −s2N+1.

3.2. Validation of the numerical approach

To evaluate the accuracy and mesh-independence of the results, several distributions
of nodes with different values of the smallest intervals near the singular points η =0
and η = b and different numbers of nodes have been employed. Table 1 gives the
tip jet angles μO/π and μB/π predicted for the vertical flat-plate water entry with
angle of incidence α = 30◦. The columns show the results for the smallest interval
in the node distribution �= η1 = b − η2N−1 = η2N+1 − b varying through the range
10−10 − 10−5 for a fixed number of nodes. The rows show the results for number of
nodes N = 50, 100 and 200 at fixed location of points η1, η2N−1 and η2N+1.

The solution converges when both the number N → ∞ and the smallest interval
� → 0. At a fixed �, the accuracy is increased with increasing N . On other hand, at a
fixed N there exists an optimum value �∗ such that a reasonable accuracy is obtained
both for the numerical integration along the imaginary axis of the parameter plane and
for the computation of the derivatives d ln v/dη and dλ/dη near the singular points.
The node distribution geometry is such that for too small values of � the node density
becomes higher near the singular points and lower for the rest of the corresponding
interval, which may decrease the integration accuracy. As can be seen from table 1,
the values μO/π = 0.03457 and μB/π = 0.30207 obtained for N = 200 and �= 10−10

can be obtained for N = 50 and a value of � lying in the range from 10−8 to 10−7.
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Figure 3. Pressure coefficient, divided by α, along the plate entering the free surface (a) verti-
cally and (b) obliquely γ∞ = 45◦. The results for the present nonlinear solution (solid lines,
•, α =1◦; ◦, α = 2◦; �, α = 3◦; , α = 10◦) are compared with Wang’s linear solution (dotted
line).

In the theoretical framework, the contact angle is an important parameter because
it influences the spatial arclength coordinate starting at the contact point. If we are
able to obtain a good accuracy for the contact angle, then we can be sure that the
accuracy for the other parameters is good too. In contrast, in the case of a poor
accuracy for the contact angle, the adequacy of the accuracy for the other flow
parameters should be studied numerically.

For validation, the results predicted by the present nonlinear theory are compared
with those predicted by Wang’s (1977, 1979) linear theory. In figure 3, a comparison
is made between the calculated pressure coefficient divided by the angle of attack α

along a plate entering the water (a) vertically and (b) obliquely and that predicted
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Figure 4. The free surface shape for the case of the oblique water entry of a flat plate at
γ∞ =108◦ and α = 72◦. The present results (solid lines) are compared with Chekin’s (1989)
nonlinear theory (dashed lines).

by Wang’s linear theory. Within the framework of the linear theory, the pressure
coefficient divided by the angle of attack is the same for various angles of attack. It
is not the same for the nonlinear theory. The difference between the dotted and solid
lines shows nonlinear effects in the water entry flow. As expected, with decreasing
angle of attack the results approach those predicted by the linear theory, which
confirms the validity of the method presented and its numerical realization. For
oblique water entry at the same angle of attack, the effects of nonlinearity increase
as a comparison between figures 3(a) and 3(b) shows. This is due to the fact that
small deadrise angles cause the slamming effect studied in detail for the water entry
of symmetric wedges, in particular, by Zhao & Faltinsen (1993).

In figure 4, the free-surface shape obtained for oblique water entry of a flat plate
at γ∞ = 108◦ and α = 72◦ is shown and compared with the corresponding result of
Chekin’s (1989) nonlinear theory. Agreement between the two results is good. The
differences may be due to the quality of drawing in Chekin’s paper since the normal
force coefficient Cn = 9.32 obtained is also close to the value Cn = 9.28 presented in
that paper. Note that the x-coordinate of the splash jet relative to the point at which
the leading edge of the plate touches the free surface is about zero. The same property
will be seen later for other initial conditions.

4. Numerical results
4.1. Vertical water entry of a flat plate

Table 2 shows the predicted angles and elevations of the free boundary at the contact
point (point O) and at the tip of the splash (point B), the pressure at the stagnation
point and the normal force coefficient. The elevation of the free boundary at the
intersection point is higher than at the tip of the splash jet on the free surface for
α < 80◦. For α = 85◦, the splash jet elevation becomes higher, and it rises rapidly.

Table 2 also gives the contact angles predicted by Zhao & Faltinsen (1993) for
the symmetric entry of a wedge with a half-angle equal to the deadrise angle β for
the flat plate. As can be seen from the table, the contact angle for the flat plate is
only slightly smaller than for the symmetric wedge entry. This means that the flow
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α β μO/π (ZF) μO/π μB/π yO yB pA Cn

3 87 − 0.0880 0.456 0.149 0.021 1.03 1.07
5 85 − 0.0816 0.432 0.228 0.025 1.06 1.15
9 81 0.0715 0.0707 0.400 0.374 0.047 1.12 1.34

20 70 0.0499 0.0487 0.334 0.733 0.115 1.31 1.90
30 60 0.0359 0.0345 0.302 1.024 0.194 1.55 2.57
40 50 0.0251 0.0237 0.278 1.275 0.282 1.87 3.48
50 40 0.0166 0.0154 0.258 1.480 0.392 2.34 4.77
60 30 0.00991 0.0089 0.234 1.627 0.542 3.11 6.78
70 20 0.00478 0.0041 0.216 1.717 0.772 4.44 10.5
80 10 0.00134 0.0011 0.196 1.725 1.253 8.86 20.8
85 5 − 0.0003 0.177 1.619 1.880 19.4 40.2

Table 2. Main reference parameters for vertical γ∞ = 90◦ flat-plate water entry with several
angles of attack α. ZF denotes results from Zhao & Faltinsen.

boundary conditions far from the tip jet have little effect on the contact angle and
thus on the slamming pressure peak that occurs at small deadrise angles.

In figure 5, streamline patterns are shown for three angles of attack that correspond
to deadrise angles of 70◦, 45◦ and 5◦. The figure clearly shows the location of the
stagnation point and the formation of a splash jet on the free surface. The location
of the contact point of the free surface and the flat plate corresponds to the trailing
edge of the plate shown in figures 5(a) and 5(b), but for case (c) this point is outside
the plotted field. Note that the x-coordinate of the tip of the splash is about equal
to the x-coordinate of the point at which the leading edge of the plate touched the
free surface at initial time t =0 for all the cases considered. Therefore, at the tip
of the splash jet the x-component of the velocity relative to this point is zero. The
extrapolation of these results leads to the conjecture that this is also true for smaller
deadrise angles.

The pressure distributions along a plate vertically entering the free surface are
shown in figure 6 for several deadrise angles. For larger deadrise angles the location
of the stagnation point is closer to the leading edge where the pressure gradient dp/ds

is very high for deadrise angles β =60◦ and 45◦, thus the cusp due to the change of
sign in dp/ds discussed at the end of § 2 is invisible. It appears for a deadrise angle
of 30◦ as a small local minimum. For this case a slamming pressure peak, which has
been thoroughly studied for symmetric wedge impact (Zhao & Faltinsen 1993), also
appears. Clearly, for smaller deadrise angles the unsteady components dominate in
the flow parameters.

4.2. Oblique entry

Table 3 gives the solutions obtained for flat-plate water entry with the horizontal
velocity component different from zero, which corresponds to oblique flat-plate water
entry. The results are reported for γ∞ = 45◦ in terms of the contact angle, the angle
at the tip of the splash jet, the free boundary elevation at the intersection point and
at the tip of the splash jet, the pressure at the stagnation point and the normal force
coefficient. From the results it can be seen that the angle at the tip of the splash jet
μB → γ∞ as α → 0. When the values of the contact angle μO presented in table 1 are
compared with those presented in table 3, it can be seen that they are close for the
same deadrise angles. This is also true for μB at small deadrise angles. Increasing the
horizontal velocity component decreases the vertical one since they are related for
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Figure 5. Free streamline patterns for vertical flat-plate water entry for several deadrise
angles: (a) β = 70◦; (b) β = 45◦; (c) β = 5◦. The interval of the streamfunction Ψ is 0.1 in (a, b)
and 0.2 in (c).

the same magnitude of the entry velocity. As expected, from the results presented in
table 2 and table 3 it follows that the lower the vertical velocity component, the lower
the elevation of the free surface, the pressure at the stagnation point and the normal
force coefficient.

In figure 7, streamline patterns are shown for oblique flat-plate water entry for two
angles of attack of 20◦ and 40◦, which correspond to deadrise angles of 25◦ and 5◦,
respectively. In figure 7(a) the trailing edge of the plate corresponds to its intersection
with the free surface. As noted above for vertical entry, the x-coordinate of the tip of
the splash jet does not change and corresponds to the x-coordinate where the leading
edge touched the free surface, i.e. the x-velocity component at the tip of the splash
jet is zero.
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α β μO/π μB/π yO yB pA Cn

0.1 44.9 0.0316 0.250 0.018 0.001 1.00 0.68
3 42 0.0248 0.247 0.196 0.030 1.04 1.08
5 40 0.0217 0.239 0.282 0.051 1.07 1.24
9 36 0.0167 0.229 0.428 0.101 1.15 1.58

15 30 0.0110 0.215 0.615 0.190 1.31 2.21
20 25 0.0074 0.205 0.751 0.284 1.49 2.94
25 20 0.0047 0.195 0.870 0.402 1.75 3.98
30 15 0.0026 0.185 0.974 0.562 2.19 5.65
35 10 0.0012 0.174 1.057 0.800 3.08 8.83
40 5 0.0003 0.153 1.078 1.282 5.23 50.3

Table 3. Main reference parameters for oblique γ∞ = 45◦ flat-plate water entry with
various angles of attack α.
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Figure 6. Effect of the deadrise angle on the pressure distribution for a flat plate vertically
entering the free surface: β = 30◦ (solid line); 45◦ (dashed line); 60◦ (dotted line).

Another direction of the horizontal velocity component corresponds to angles
γ∞ > 90◦. Presented in table 4 are the same quantities as in table 3 but for γ∞ =135◦.
The results obtained show that the contact angle μO/π tends to the value 0.25 as
α → 0. This value corresponds to the maximum value of the contact angle obtained
from the theoretical estimation made by Dobrovol’skaya (1969) and Fraenkel &
Keady (2004) for symmetric wedge water entry. However, the actual maximum value
in this case obtained by these authors is μO/π = 0.1. This difference may be due to
the geometric constraint on the maximum value of the deadrise angle, which is 90◦

for symmetric wedge entry, while for our case it is 180◦. From the results in table 4 it
can also be seen that the angle at the tip of the splash jet μB → γ∞ = 135◦ as α → 0
just as it does for the other velocity directions γ∞ discussed above. However, in this
case it rapidly decreases if the angle of attack slightly increases.

In figure 8, streamline patterns are shown for several conditions of oblique flat-plate
water entry. The stagnation point moves from the leading edge along the plate as
the angle of attack α = γ∞ − β increases. The case of a small deadrise angle like that
shown in figure 8(d) may occur for surf-planing along a rising wave. The pressure
distributions along the plate for figures 8(a) and 8(d) are shown in figure 9. These have
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α β μO/π μB/π yO yB pA Cn

0.01 134.99 0.250 0.741 0.000 0.000 1.00 0.43
0.1 134.9 0.245 0.659 0.003 0.001 1.00 0.43
1 134 0.217 0.435 0.025 0.005 1.01 0.44
5 130 0.168 0.348 0.124 0.022 1.04 0.49

10 125 0.139 0.325 0.248 0.043 1.09 0.57
20 115 0.104 0.304 0.499 0.080 1.19 0.74
30 105 0.081 0.291 0.749 0.117 1.30 0.94
40 95 0.064 0.281 0.987 0.154 1.44 1.17
50 85 0.051 0.271 1.208 0.193 1.60 1.46
60 75 0.040 0.263 1.397 0.234 1.79 1.80
70 65 0.031 0.254 1.549 0.305 2.03 2.23
80 55 0.023 0.246 1.658 0.359 2.35 2.78
90 45 0.016 0.239 1.704 0.464 2.79 3.49

100 35 0.011 0.233 1.745 0.541 3.59 4.97
110 25 0.006 0.226 1.659 0.624 4.68 6.59
120 15 0.002 0.220 1.500 0.766 7.19 10.0

Table 4. As table 3 but γ∞ = 135◦.
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Figure 7. Free streamline patterns for oblique flat-plate water entry with γ∞ = 45◦

for two deadrise angles: (a) β = 25◦; (b) β =5◦.

two maxima due to the flow unsteadiness discussed at the end of § 2. The location
of the local minimum corresponds to the stagnation point. The larger maximum
is caused by the slamming effect occurring near the core of the tip jet. The other
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Figure 8. Free streamline patterns for oblique flat-plate water entry: (a) γ∞ = 135◦,
β = 90◦; (b) γ∞ = 135◦, β = 70◦; (c) γ∞ = 160◦, β = 40◦; (d) γ∞ = 160◦, β = 20◦.

maximum occurs due to the local minimum at the stagnation point since the sign of
the pressure gradient changes at this point. A similar but much smaller effect in the
pressure distribution near the stagnation point was predicted by Semenov & Iafrati
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Figure 9. Pressure distributions along the plate for cases (a) (dash dotted line), (b) (dotted
line), (c) (dashed line) and (d) (solid line) in figure 8. The open circles show the pressure at the
stagnation points.

(2006) for the vertical entry of asymmetric wedges. For the case of oblique entry, the
increase in the pressure peak near the tip jet may occur due to the x-component of the
entry velocity causing more liquid to enter the tip jet. Thus the larger the slamming
effect, the more visible the effect of the pressure minimum at the stagnation point.

5. Conclusions
We have presented an analytical solution to the nonlinear self-similar problem

of flat-plate water entry. The method of the solution is based on some advances
in solving two-dimensional boundary-value problems using the calculus of complex
variables. Two integral formulae, which determine an analytical function from its
modulus and argument given on the real and the imaginary axes of the first quadrant
chosen as the parameter region, are presented. These formulae provide the possibility
of finding the governing functions of the solution which conformally map the first
quadrant onto the complex velocity and complex potential planes without recourse to
Chaplygin’s singular point method. An analytical expression for the function mapping
the parameter region onto the physical plane is found using these governing functions
and the flow self-similarity.

Numerical results are presented for a wide range of angles of attack and entry
velocity directions. Particular attention is paid to the splash jet occurring on the free
surface. It is found that the maximum value of the angle at the tip of the splash jet
tends to the value of the deadrise angle as the angle of attack tends to zero. It is also
found that at the tip of the splash jet the x-component of the velocity relative to the
point at which the leading edge touched the free surface at time t =0 is equal to zero
for various initial conditions.
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Another new feature is found at the intersection of the free surface and the flat
plate for deadrise angles larger than 90◦. The contact angle obtained for deadrise
angle β ≈ 135◦ and angle of attack α ≈ 0 is about 45◦, which is the maximum
given by the theoretical estimation obtained earlier (Dobrovol’skaya 1969; Fraenkel
& Keady, 2004). We note that the predicted maximum value for symmetric wedge
entry is only 18◦ for a near-zero wedge angle.

For small deadrise angles and large oblique angles of the entry velocity, the pressure
distribution along the plate has two maxima with a local minimum between them
located at the stagnation point in terms of the self-similar solution.

Parametric dependences of the contact angle, angle at the tip of the splash jet,
pressure distribution along the plate and force coefficient have been presented for a
wide range of the initial conditions.
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